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Abstract

A new class of room-temperature, diode-pumped solid state lasers, that are broadly tunable in
the mid-infrared spectral region, has been conceptualized and demonstrated. These lasers are
based on intra-ion transitions of divalent transition metals placed in substitutional cation sites of
tetrahedral symmetry in large bandgap chalcogenide semiconductor crystals. These combinations
of laser-ions and host crystals are seen to provide favorable radiative and non-radiative transition
processes for the realization of the desired laser performance characteristics. Spectroscopic data
for candidate schemes are reviewed and divalent chromium doped zinc chalcogenides are
identified as potentially superior laser candidates. Preparation of laser quality Cr2+:ZnSe crystals
is described and experimental results to date for a diode-pumped laser are given. Remaining
laser development issues are discussed briefly.
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INTRODUCTION

The invention and development of the titanium doped sapphire (Ti:S) laser gain crystal by
Moulton [1] in 1985 launched a new era in laser applications. As is well known, this laser crystal

is characterized by a broad pump absorption band peaked near 500 nm, and a broad (~2300 cm1)
Stokes-shifted emission band centered near 800 nm. These bands arise from electronic transitions

between the ground 2T and excited 2E levels of the ground d? electronic configuration of the

Ti3* ion, situated in the distorted octahedral A13+ sites of the Al203 lattice. The crystal field
induced electric dipole transition moment results in a radiative lifetime of ~4 microseconds and

peak absorption and emission cross sections of ~3 x 10-19 em2. These spectroscopic characteristics
have enabled the design and practical realization of novel Ti:S solid state lasers with a wide
variety of output waveforms: tunable emission [2] from ~680-1065 nm; pure CW room
temperature operation at the multi-watt power level [3]; gain-switched pulsed operation [4];
mode-locked operation with pulsewidths ~11 fsec [5]; amplification of chirped pulses to the
multi-terawatt level [6]. When combined with nonlinear conversion elements (doublers, mixers,
optical parametric generators, etc.), the Ti:S laser has become a nearly ubiquitous source of ultra-
short-pulse tunable radiation in the ultraviolet, visible, and infrared regions for use in scientific,
biological, medical, military, commercial, and industrial applications.

In view of the success of the Ti:S laser, one might well seek analogous laser gain media
operating in other spectral regions, vis., the mid-infrared. In contrast to the Ti:S laser, such a laser
could in principle also be directly pumped by powerful InGaAsP semiconductor laser diode
arrays. This new laser type would be useful in directly generating radiation within the 2000-3000
nm mid-IR transmission window of the atmosphere for use in remote-sensing applications.
Figure 1 shows this atmospheric transmission window and summarizes the desired features of a

This work was performed under the auspices of the U.S.Department of Energy by Lawrence
Livermore National Laboratory under contract no. W-7405-Eng-48.



b
(=
(=3

.. _ 5.7 mm Precipitable -
— 8ol H,0 water T9°F ]
5 n and
§ el co, Li F Prism \
/]
g - | H20 and CO2 l\
a2 40—
E+ J
20— HzO
0 \‘ch“ﬁ ] l.‘ -‘,
1.8 2.0 2.2 2.4 2.6 2.8 3.0
Wavelength (um)
Compact (Diode Pumped) Waveform: Q-switched, >50 kHz rep rate
Output Power, >10 Watts Tunable Ranges: 2.0 — 2.6 microns
Operating Temperature, 300 K Efficiency, >5% (air platform)

Figure 1. Remote-sensing application in the 2-3 micron atmospheric transmission window.
Desired characterisitics of a diode-pumped tunable solid state laser source are given.
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Figure 2. Absorption coefficient of water in the 2-4 micron region. Anticipated tuning range of a

Cr2+:ZnSe diode-pumped solid state laser.




tunable diode-pumped solid state laser for remote sensing applications. Such mid-IR lasers might
also serve as wavelength tunable sources of high power radiation in the 2000-3000 nm region for
therapeutic medical applications. Figure 2 shows the absorption coefficient of water (containing
tissue) in this spectral region. By tuning across the short wavelength side of the intense water
absorption band peaked at ~2950 nm, a surgeon could continuously adjust the depth of
penetration of the applied radiation by over three orders of magnitude (from mm to microns)
using a single tunable laser source. Because of its broad spectral gain bandwidth, the laser could
also be configured to generate tunable sub-picosecond pulses, permitting a high ablation rate of
tissue while incurring very little transfer of thermal energy to the supporting tissue [7]. The main
question then is, "What class of laser active ions and crystalline hosts possess the required static
and dynamic spectroscopic characteristics needed for an infrared "Ti:S" laser?”

CANDIDATE LASER ION AND CRYSTAL HOST TYPES

The fundamental reason for the lack of a room temperature, broadly tunable, mid-IR solid state
laser is the relative paucity of luminescent materials in that spectral region. The usual explanation
for this "long wavelength cut-off" of luminescence is the rapid on-set of radiationless decay
associated with multi-phonon emission (MPE), [8]. As the electronic transition "energy gap"
declines with increasing emission wavelength, the MPE rate overtakes and ultimately
overwhelms the radiative transition rate, quenching the luminescence. Thus, we need to identify
ion/host systems for which the radiative decay rate is comparatively high and the radiationless
decay rate is comparatively low.

As is well known, crystals containing progressively heavier anions also are characterized by
smaller (maximum) phonon energies. In such crystals, greater numbers of phonons (and
correspondingly high-order multiphonon processes) are required to span a given electronic
transition energy gap, and are more likely to manifest long wavelength luminescence.

As potential laser ion candidates for the desired class of mid-IR lasers, transition metal ions offer
many desirable characteristics. Their free-ion ground electronic configurations are formed by d-
electrons which interact rather strongly with lattice anions, often giving rise to
absorption/emission spectroscopic features characterized by large Stokes shifts (thousands of
wavenumbers). The band emission characteristics resulting from such Stokes shifts offer the
potential for obtaining broadband optical gain and the generation of ultra short pulses.

When a transition metal ion is substitutionally incorporated into a crystalline host, electric
dipole transitions are induced between its d™ electronic levels, as a result of odd-parity crystal
field components produced at the cation substitutional site by lattice anions. Since we desire the
laser transition to have a relatively high radiative transition rate (so as to dominate any
radiationless decay mechanisms), we should consider crystals with heavy anions and
substitutional cation sites with high asymmetries (e.g. T4 symmetry). Perhaps the simplest

physical system meeting these general criteria is the following: TM2+:MX, where M = Zn, Cd
and X =S, Se, Te, and where TM2+ = divalent transition metal ion.

As a class, divalent transition metal doped II-VI crystals possess several important features. First
is the existence of many chemijcally-stable divalent transition metal ions which readily substitute
for the M=Zn, Cd divalent cations of MX crystals (with no need for charge compensation and
little disturbance of the host crystal lattice). An additional feature of II-VI crystals is their
tendency to crystallize in the wurtzite and sphalerite structures whose cation sites are
tetrahedrally coordinated. This provides the strong odd-parity crystal field components at the
cation site needed for significant mixing of opposite parity metal ion p-electronic wavefunction

into the ground d™ configuration. The low phonon energies of these heavy catiort hosts give rise



to high IR transparency and reduced multi-phonon decay rates. Mid-IR luminescence of several
TMZ2* ions in ZnX crystals have been extensively reported in the literature [9). DeLoach, et. al.

[10] have surveyed a number of TM2+:MX materials systems with the express interest in their use
as room temperature, diode-pumped mid-IR tunable lasers.

THE Cr2+:ZnX (X = S, Se, Te) LASER MATERIAL SYSTEM

Figure 3 shows the energy levels of several divalent transition metal ions substituted for Zn in
ZnSe (T4 site symmetry), taken from Fazzio [11]. Several factors identify the Cr2* ion as a likely
effective laser ion emitting in the mid-IR. First the lowest-lying excited state (°E) is separated
from the ground 5T level for about 4800 cm'1 (providing pump and luminescence bands in the
desired spectral region. The Tanabe-Sugano energy level diagram of the Cr2*(d4) ion in Td
coordination is shown in Figure 4. The DqB values for the ZnSe and ZnS crystal lattices are
indicated. According to Figure 4, we would expect to Cr2* ions in these lattices to exhibit strong
(spin-allowed) pump absorption bands near 1700 nm, and strong Stokes-shifted emission bands
centered at ~2400 nm. Figure 5 shows the E - 5T, absorption and emission bands for ZnS, ZnSe,
and ZnTe crystals doped with Cr2* ions [10}, along with measured temperature-dependent
luminescent lifetimes. The absorption and emission bands are just as expected. The luminescence
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Figure 3. Electronic energy levels of divalent transition metal ions in ZnSe (after Fazzio [11].
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Figure 4. Tanabe-Sugano energy level diagram for Cr2* ions in Ty coordination. DgB values for ZnSe
and ZnS crystal lattices are indicated. The 5T - SE transition near 2400 nm is identified as a
candidate laser transition.

lifetimes are characteristically a few microseconds long, increasing slowly with temperature from
low temperature to near room temperature, and then decreasing above room temperature. These
data are in general agreement with previously reported data in the literature [12-15]. The
observed characteristic temperature dependence can be reasonably interpreted as being
consistent with essentially radiative decay for temperatures up to room temperature. The rather
short radiative decay times (microseconds) corresponds to the rather large calculated (stimulated)
emission cross sections indicated in Figure 5. In order to attain efficient laser action, it is also
important that the gain medium be essentially free of excited state absorption at pump and laser
wavelengths. In of the case of the Cr2* ion in T4 coordination, all of the electronic levels lying
above the upper laser (5E) level are either singlets or triplets, and one can anticipate at most only
weak excited state absorption at the pump and/or laser wavelengths.
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Figure 5. Room temperature absorption and emission spectral of ZnSe, ZnS, and ZnTe doped
with Cr2* jons. Temperature dependence of the decay times of the 5T, - 5E luminescence
centered near 2400 nm.
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Cr2+:ZnSe LASER EXPERIMENTS

Successful demonstrations of laser action have been carried out by DeLoach, et. al. [10] and by
Page, et. al. [16,17,18]. To perform these laser experiments, laser gain crystals of ZnSe doped with
Cr~* jons were prepared in several ways, including doped Bridgeman [10], vapor phase transport
[16,17], and diffusion doped CVD [17]. These experiments have been analyzed and reported in
the literature (10, 16, 17]. A maximum slope efficiency of 30% was observed. When free running
without an intra-cavity tuning element present, the laser oscillated at a wavelength of ~2350 nm,
quite near the peak of the luminescence curve. Using a birefringent filter as a tuning element in
the cavity, a tuning range from 2280 to 2530 nm was observed. In subsequent experiments using a
grating tuning element, Page [18] observed a much broader tuning range (665 nm) from 2134 to
2799 nm, essentially over the entire luminescence (gain) band. These results indicate, as expected,
that there is little if any excited state absorption near the luminescence band. This result is
consistent with the photoconductivity measurements reported for Cr2*:ZnSe [19].

More recently, Page [18] has demonstrated a diode-pumped Cr2+:ZnSe laser. A four bar stack of
high power GaInAsP diodes emitting near 1650 nm was designed and fabricated as the pump
source for this laser. The pump array bars were fitted with collimating microlenses to ensure a
high transport and focusing efficiency in the laser gain medium. The Figure 6 shows a schematic
of the diode pumped laser layout. The array output was brought to a line focus (0.2 mm high) on
one of the slab laser crystal faces. The laser crystal was relatively lightly doped, providing a
pump absorption coefficient of only 4.4 cm™l. The ends of the slab are anti-reflection coated at
2500 nm. A single bounce at the pumped crystal surface allows the resonated cavity mode to
experience high laser gain, yet enter and exit the crystal without significant aperture losses.
Figure 7 shows a plot of the observed laser output energy as a function of the absorbed pump
energy. Analysis of the output/input data with different coupling fractions indicates that the
passive crystal loss at the laser wavelength is ~15%/cm. Efforts are now under way to reduce the
loss coefficient while increasing the amount of Cr2* in the crystal. These preliminary laser results
suggest that efficient and effective diode pumping of the Cr2+:ZnSe are quite feasible, and that
compact high performance Cr2*:ZnSe tunable lasers can be expected with a wide variety of
output waveforms possible.
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